A CFD-Based Throughflow Method With Three-Dimensional Flow Features Modelling

TitleA CFD-Based Throughflow Method With Three-Dimensional Flow Features Modelling
Publication TypeJournal Article
Year of Publication2017
AuthorsPacciani R, Marconcini M, Arnone A
JournalInternational Journal of Turbomachinery, Propulsion and Power
Volume2
Issue3
Number11
Date Published06/2017
ISSN Number2504-186X
Other NumbersScopus 2-s2.0-85063897803
Abstract

The paper describes the development and validation of a novel computational fluid dynamics (CFD)-based throughflow model. It is based on the axisymmetric Euler equations with tangential blockage and body forces and inherits its numerical scheme from a state-of-the-art CFD solver (TRAF code). Secondary and tip leakage flow features are modelled in terms of Lamb–Oseen vortices and a body force field. Source and sink terms in the governing equations are employed to model tip leakage flow effects. A realistic distribution of entropy in the meridional and spanwise directions is proposed in order to compute dissipative forces on the basis of a distributed loss model. The applications are mainly focused on turbine configurations. First, a validation of the secondary flow modelling is carried out by analyzing a linear cascade based on the T106 blade section. Then, the throughflow procedure is used to analyze the transonic CT3 turbine stage studied in the framework of the TATEF2 (Turbine Aero-Thermal External Flows) European program. The performance of the method is evaluated by comparing predicted operating characteristics and spanwise distributions of flow quantities with experimental data.

URLhttp://www.mdpi.com/2504-186X/2/3/11
DOI10.3390/ijtpp2030011
Refereed DesignationRefereed