Assessment of Machine-Learned Turbulence Models Trained for Improved Wake-Mixing in Low Pressure Turbine Flows

TitleAssessment of Machine-Learned Turbulence Models Trained for Improved Wake-Mixing in Low Pressure Turbine Flows
Publication TypeJournal Article
Year of Publication2021
AuthorsPacciani R, Marconcini M, Bertini F, Rosa Taddei S, Spano E, Zhao Y, Akolekar H, Sandberg R, Arnone A
JournalEnergies
Volume14
Issue24
Pagination8327
Date Published12/2021
ISSN Number1996-1073
Accession NumberWOS:000737522700001
Other NumbersScopus 2-s2.0-85121299698
Keywordslow-pressure turbine; wake mixing; transition; machine learning; explicit algebraic Reynolds stress model; laminar kinetic energy
Abstract

This paper presents an assessment of machine-learned turbulence closures, trained for improving wake-mixing prediction, in the context of LPT flows. To this end, a three-dimensional cascade of industrial relevance, representative of modern LPT bladings, was analyzed, using a state-of-the-art RANS approach, over a wide range of Reynolds numbers. To ensure that the wake originates from correctly reproduced blade boundary-layers, preliminary analyses were carried out to check for the impact of transition closures, and the best-performing numerical setup was identified. Two different machine-learned closures were considered. They were applied in a prescribed region downstream of the blade trailing edge, excluding the endwall boundary layers. A sensitivity analysis to the distance from the trailing edge at which they are activated is presented in order to assess their applicability to the whole wake affected portion of the computational domain and outside the training region. It is shown how the best-performing closure can provide results in very good agreement with the experimental data in terms of wake loss profiles, with substantial improvements relative to traditional turbulence models. The discussed analysis also provides guidelines for defining an automated zonal application of turbulence closures trained for wake-mixing predictions

URLhttps://www.mdpi.com/1996-1073/14/24/8327
DOI10.3390/en14248327
Refereed DesignationRefereed